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Parallel Graph Laplacian and Bundle Adjustment Solvers

Thesis directed by Prof. Jed Brown

Multigrid is a powerful linear system solver for PDE systems. This thesis is concerned with expanding

the domain of multigrid solvers to bundle adjustment, and expanding existing multigrid techniques for

graph Laplacians into a distributed memory environment. Graph Laplacians are a mathematical model

representing objects and relationships, and the interactions between them. When used as a model for social

networks, graph structure is irregular, making solving the linear system difficult. Existing multigrid solvers

for graph Laplacians are an effective solution, however, prior work is inherently serial. Parallel multigrid

solvers have a rich history, but none are suited to solving graph Laplacian problems. In this work, the

current state of the art is extended into a distributed memory environment by developing a new parallel-

friendly aggregation algorithm and adjusting low-degree elimination for parallel datastructures. Parallel

scalability on a large number of social network graphs shows good results.

Bundle adjustment is a nonlinear optimization technique used in Structure from Motion pipelines to

remove error in camera and point observations. This thesis discusses the creation a new multigrid solver

for bundle adjustment that improves performance on large, difficult problems. An analysis of what makes

bundle adjustment problems difficult to existing solvers, and how multigrid addresses these problems is

presented. Multigrid shows good scaling on large problems. Performance of various linear system solvers

on bundle adjustment in distributed memory systems is also considered.
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Chapter 1

Introduction

This thesis covers two main areas: graph Laplacians and bundle adjustment. Graph Laplacians are linear

systems used in analysis and embedding of networks. Bundle adjustment is a nonlinear optimization

problem used for creating 3D maps. Although these problems are very different, they share a common

feature: both require the solution of linear systems of very large size. They also both have some sort

of irregular structure that can be exploited. The solver of choice for large linear systems is multigrid, a

multilevel approach. The typical area for multigrid use is partial differential equations (PDEs), used in

various kinds of simulation and modeling. These systems are regular in their connectivity: degrees of

freedom are connected to a low number of neighbors that are close in the physical domain. Both graph

Laplacians and bundle adjustment are removed in some way from the typical area of multigrid usage.

Graph Laplacians contain irregular structure not seen in most PDEs and bundle adjustment is a block

system that combines similar irregularity with a richer near-nullspace. In both these cases, the different

structure poses challenges to existing multigrid solvers.

Although multigrid scales linearly with problem size, some problems exceed the limits of computation

that can be done on a single computer. Stepping to distributed memory parallelism increases the size

of problems that can be solved in a reasonable amount of time. Although multigrid is often used in a

distributed memory environment, graph Laplacians and bundle adjustment have structure that makes the

usual approaches infeasible. This thesis will discuss an approach to distributed memory parallelism for

multigrid solver for graph Laplacians as well a serial multigrid solver for bundle adjustment. This thesis
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will also discuss distributed memory parallel solvers for bundle adjustment.

1.1 Graph Laplacian

Graphs arise in many areas to describe relationships between objects. In a graph, there are two types of

objects: vertices and edges that connect them. Here is a visual representation of a graph:

with the grey circles representing vertices and the lines between them representing edges. These could be,

for example, people in a social network (vertices) and friendships between them (edges), computers and

the network connections between them, or cities and the highways connecting them. In all these cases, the

structure of the graph depends on how these connections are formed. In a social network graph, a famous

person would be connected to many more people than a regular person leading to a hub-like structure

where one vertex is connected to many others. In the case of a road network, there could be long chains

corresponding to a series of connected cities. No matter the case, the underlying geometry or characteristic

of the problem is reflected in the graph structure. The structure of a graph can be characterized in many

ways. The diameter of a graph measures the longest shortest path in the graph. This measure reflects

how long it takes information to propagate in the graph. The degree of a vertex is the number of edges

connected to it. This is a measure of local connectedness of a vertex.

In this thesis we will consider only weighted, undirected graphs. A weighted graph has a weight asso-

ciated with each edge. Heavier edges may represent stronger connections. An undirected graph is one in

which the edges are bidirectional. For example, an undirected road network would mean that one can

travel both ways on every street. A weighted graph G = (V,E,w) (where V are vertices, E are edges and
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w are edge weights) can be expressed as an adjacency matrix A:

Aij =


wij , if (i, j) ∈ E,

0, otherwise.

The Laplacian matrix L can then be expressed as:

L = D −A, (1.1)

Dij =


∑

uAuj , if i = j,

0, otherwise.

(1.2)

As the graph is undirected, (i, j) ∈ E ⇐⇒ (j, i) ∈ E and wij = wji. We also limit ourselves to

positively weighted (w ≥ 0) graphs.

Graph Laplacians of this type have a couple of properties:

• Column and row sums are zero.

• Off diagonal entries are negative.

• Diagonal entries are positive.

• L is symmetric positive semi-definite.

In this thesis, we assume that G is connected. A connected graph is one where each vertex can reach

every other vertex by traversing edges. For example, in a connected road network, every city can be

reached from every other city by driving on road. A graph with multiple connected components can be

considered as a set of independent graphs and each can be solved separately. Determining connected

components is a preprocessing step, so we ignore it and assume all graphs we will be dealing with are

connected.

For a connected graph, the corresponding Laplacian matrix has a null space spanned by the constant

vector. The dimension one nullspace is easier to keep track of and orthogonalize against. Given the eigen-

system Lui = λiui, the eigenvalues 0 = λ0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn−1 are non-negative and real. The
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multiplicity of zero eigenvalues is equal to the number of connected components in the graph. Because

we are only considering connected graphs the multiplicity of zero eigenvalues is one. The eigenvector u1

associated with the second smallest eigenvalue approximates the sparsest cut—a partitioning of the graph

into two halves that minimizes the number of edges cut over the number of vertices in the smaller half. The

sign of u1 determines which side of the cut each vertex belongs to [62].

1.1.1 Applications

Some applications of the graph Laplacian include:

• Graph partitioning As mentioned above, the eigenvector associated with the second second

smallest eigenvalue of the graph Laplacian approximates the sparsest cut in the graph (Assuming a

single connected component).

• Graph drawing Like graph partitioning, spectral graph drawing relies on finding eigenvalues and

eigenvectors of the Laplacian to embed the graph in a two dimensional space for visualization.

Each vertex i is placed at (u1(i), u2(i)). Other graph drawing techniques, such as the Maxent-

Stress model, rely on solving the graph Laplacian [28].

• PDEs on unstructured meshes Some discretizations of partial differential equations on unstruc-

tured meshes result in matrices of the same from as a graph Laplacian [63]. If the mesh has large

variation in vertex degree, solution techniques for arbitrary graph Laplacians might outperform

those designed for fixed degree or more structured meshes.

• Electrical flow A circuit of resistors with current inputs and sinks between them can be modeled

as a graph Laplacian. Each vertex in the graph is a current input or sink, and edges correspond to

resistors with resistance equal to reciprocal resistance. If r is a vector where ri is the current input

or draw, then solving p = L−1r gives the potential pi at vertex i [63].

See Spielman’s article on applications of the graph Laplacian for more details [63].
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All these applications (either directly or indirectly) require applying the action of the inverse of the

graph Laplacian (L−1). We refer to computing x in Lx = b as solving the graph Laplacian—the equivalent

of applying the inverse. We refer to a method of solving Lx = b as a solver. Often, a highly accurate

solve is not required. In these cases, a cheap iterative method is applied to compute an approximation of

x. For example, to compute the small eigenvalues and associated eigenvectors for graph partitioning, an

eigensolver iterates on approximations of inverted matrix, L−1, using an iterative method. In this use case,

the majority of time is spent in the linear solve (i.e., computing an approximation to L−1x).

1.1.2 Social Network Graphs

There are many different kinds of graphs: road networks, computer networks, social networks, power grids,

document relations, etc. We focus our performance evaluation on social network graphs because they often

provide the most difficulty for existing multigrid solvers. Structured graphs, such as those associated with

PDEs discretized on a grid, provide more opportunities for a solver to cut corners. Social networks have a

couple of properties that make them more difficult to solve than other graphs:

• Social network graphs are sparse: the number of edges is roughly a constant factor of the number

of vertices. This property allows us to use a sparse solver on the graph Laplacian to solve it in

hopefully O(|V |) time (theoretically possible for some sparse linear systems). If the graph was not

sparse, the best we could hope is a solve time of O(|V |3) for a direct solver.

• Edges in these networks follow a power-law degree distribution (these graphs are called scale-free).

A small number of vertices have a large number of neighbors, whereas the rest have a relatively

small degree. This presents a challenge when determining how to distribute work in parallel.

• These graphs are expander-like. An expander graph is one in which a random relatively small

subset of the vertices has a large number of neighbors. This causes difficulty in linear solvers that

rely on the neighbors of neighbors of a vertex as this neighborhood of neighborhood encompasses

almost the entire graph.
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1.2 Bundle Adjustment

Large scale mapping applications such as Google Street View [36] and maps for self driving cars rely on

triangulation of features in images to accurately create 3D maps. This construction of 3D maps from image

data is referred to as Structure from Motion (SfM). An SfM pipeline works as follows:

(1) A sequence of images is captured from moving vehicles or hand-held cameras.

(2) A sparse set of features are extracted from each image.

(3) Features are matched across pairs of images. Not all pairs of images contain matches.

(4) Feature matches along with (optional) GPS data are used to triangulate the approximate locations

the images were taken from (camera poses) and locations of features in the world (3D points).

(5) Approximate locations along with feature matches are fed into a global optimization pass that

jointly refines camera poses and 3D points to high accuracy. This processes is called bundle adjust-

ment.

Feature matching (step 3) and bundle adjustment (step 5) are usually the computationally expensive

parts of Structure from Motion. Feature matching is a hard problem as the naive approach matches every

image with every other image. However, it is trivially parallelizable, so it is not (theoretically) the limiting

factor on large datasets. For this reason, and the fact that we are interested in exploiting hierarchical

structure, we focus on bundle adjustment.

Step 4 above results in a noisy approximation of camera poses and world points. To refine these approx-

imations in a globally consistent way, a nonlinear optimization step called bundle adjustment is used. We

use a nonlinear least-squares formulation of bundle adjustment where we minimize

min
x

1

2

∑
i

‖yi − f(xi)‖2,

where y are some observation coordinates in images, f is the model function, and x are the parameters.

For bundle adjustment the model function is projection and the parameters are camera poses, camera in-

trinsics, point locations, and observations. Camera poses consist of a rotation and a translation in 3D space.
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Camera intrinsics model how points in the world are projected into the camera image. Intrinsics include

a focal length, and two radial distortions. Point locations are translations in 3D space. The observation

coordinates, y, are the 2D coordinates (u, v) of the feature in the camera image frame. Bundle Adjustment –

a Modern Synthesis [70] provides a good overview of bundle adjustment.

1.2.1 Reprojection Error

We use projection error as our model function. This is a common choice that seeks to minimize the differ-

ence between each point projected into a camera and the actual location the point was observed at. Given a

point p; a camera composed of a 3 × 3 rotation matrix R, a 3 × 1 translation vector t and a 3 × 3 intrinsic

matrix K; and an observation at (u, v), the reprojection error is defined as:

x = proj

K

[
R t

]p
1


 , (1.3)

h([z1 z2 z3]
T ) =

[z1 z2]
T

z3
, (1.4)

proj(y) =
(
1 + ||y||2 ∗

(
d1 + d2 ∗ ||y||2

))
h(y), (1.5)

reprojection error = (u− x0)
2 + (v − x1)

2, (1.6)

where proj projects the point from homogeneous coordinates to inhomogeneous coordinates (including

radial distortion). To avoid overparameterization of the rotation and intrinsic matrices, we represent the

rotation as a 3 × 1 Rodrigues vector, the intrinsic matrix with a focal length, and the distortion with two

parameters (d1, d2). The reprojection error contains two residuals per observation: one for u and one for v.

1.2.2 Levenberg-Marquardt

A usual choice of solver for the nonlinear least-squares bundle adjustment problem is the Levenberg-

Marquardt algorithm [42, 48]. This is a quasi-Newton method that repeatedly solves JTJ + D = −Jr

where J is the Jacobian of the model function, D is a diagonal damping matrix, and r is the residuals.

Levenberg-Marquardt can be considered as a combination of a Gauss-Newton with gradient descent.
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Algorithm 1 Levenberg-Marquardt Optimization

1: function LM(initial solution x, objective function f , Jacobian function J)
2: λ← λ0

3: while not converged do

4: D← λI
5: solve (J(x)TJ(x) +D)s = −J(x)Tx for s . Linear solve

6: if f(x+ s) < f(x) then . Successful step

7: x← x+ s
8: λ← λ

2
9: else . Failed step

10: λ← 2λ
11: end if

12: end while

13: end function

This is a simple version of Levenberg-Marquardt. There are many enhancements that can be made; for

example λ can be updated depending on how many successful or unsuccessful steps have occurred [74].

Or it can be updated based on the size of the step and value of the objective function [69]. The damping

matrix, D, does not necessarily need to be a scaling of the identity matrix. One can use a scaling of the

diagonal of J(x)TJ(x) instead [42]. Sometimes, a line search can be used to improve results [22].

1.3 Algebraic Multigrid

Algebraic multigrid (AMG) is a family of techniques for solving linear systems of the form Ax = b.

Specifically, algebraic multigrid constructs a hierarchy of approximations to A using only the values in

the matrix A. These approximations, {A = A0, A1, A2, A3, ...}, are successively coarser: size(Al) >

size(Al+1). For each level l in the hierarchy, we have a restriction operator Rl that transfers a residual

from level l to level l + 1 and a prolongation Pl that transfers a solution from level l + 1 to level l. The

coarse level matrix is usually constructed via a Galerkin product: Al+1 = RlAlPl.
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Algorithm 2 Multigrid cycle with cycle index γ

1: function mgcycle(level l, initial guess x, rhs b)
2: if l is the coarsest level then
3: x← Direct solve on Alx = b
4: return x
5: else

6: x← smooth(x, b) . Pre-smoothing

7: r← b−Alx . Residual

8: rc ← Rlr . Restriction

9: xc ← 0
10: for i ∈ [0, γ) do
11: xc ← mgcycle(l + 1, xc, rc) . Coarse level solve

12: end for

13: x← x+ Plxc . Prolongation

14: x← smooth(x, b) . Post-smoothing

15: return x
16: end if

17: end function

Algorithm 2 depicts a multigrid cycle with cycle index γ (γ = 1 is called a V-cycle, and γ = 2 is a

W-cycle). Repeated application of this algorithm xk+1 ← mgcycle(0, xk, b) often converges to an approx-

imate solution Ax∗ u b, reaching a given tolerance in a number of iterations that is bounded independent

of problem size. Fast convergence depends on sufficiently accurate restriction and prolongation opera-

tors complemented by pre-smoothing and post-smoothing that provide local relaxation. Typical smoother

choices are Gauss-Seidel, Jacobi, and Chebyshev iteration. Note that pre- and post-smoothing may use

different smoothers or different numbers of smoothing iterations. Given a restriction and prolongation,

we identify “low frequencies” as those functions that can be accurately transferred to a coarse space and

back. A smoother need only be stable on such functions, but must reduce the error uniformly for all “high

frequencies”—those which cannot be accurately transferred.

There are two main ways of constructing {A1, A2, A3, ...}: classical AMG and aggregation-based AMG.

Classical (or Ruge-Stüben) AMG constructs R and P using a coarse-fine splitting: the coarse grid is a subset

of the degrees of freedom (or “points”) of the fine grid [59]. P keeps values at coarse points and extends

them via a partition of unity to neighboring fine points. Then, R = P T . In aggregation-based AMG,

degrees of freedom are clustered into aggregates. An aggregate on the fine level becomes a point on the

coarse level. R and P usually take some weighted average of points in each aggregate to the coarse level.

Aggregation-based multigrid methods typically smooth R and P for better performance [72].
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In this thesis we use exclusively aggregation-based AMG. For the irregular domains we cover, finding

representative degrees of freedom in classical AMG can pose a challenge. Furthermore, in situations where

slow to converge modes are known, classical AMG does not provide a method for improving the coarse

grid approximation. Aggregation-based AMG provides a clear method for using slow to converge modes in

addition to having some theory on how to build aggregates on irregular problems.

1.3.1 Aggregation

There are many choices of how to choose aggregates for aggregation based multigrid methods. All aggre-

gation routines attempt to aggregate degrees of freedom such that there is maximal connectivity inside

the aggregate and minimal connectivity outside the aggregate—essentially a graph clustering problem.

Routines must trade off between aggregate size and convergence speed. Large aggregates make coarse lev-

els smaller, but are slower to converge. On the other hand, small aggregates converge quickly, but coarse

levels are larger.

Degrees of freedom within an aggregate should be tightly coupled so that their coarse level degree of

freedom is accurately representative. Most aggregation routines use a strength-of-connection metric to

determine what constitutes a tightly coupled set of dofs (see section 1.3.2). This metric is expressed as a

weighted graphs where the weight of an edge determines the strength of the connection. The connectivity

of this graph is a subset of the connectivity of the dofs in the linear problem. Connections not in the linear

problem are not considered as they are at most indirect. Aggregation routines for more regular meshes

usually expect that all connections in the strength-of-connection matrix are “strong”. Poor connections are

then dropped before aggregation, either using a constant threshold or some row-based threshold [53, 56,

59, 72]. This thresholding is not robust—different thresholds can have significant impact on performance

of the solver. The correct choice of threshold depends on mesh shape and the type of problem being solved.

Aggregation routines intended for less regular problems usually do not require thresholding. These routines

are intended to work with a variety of strength-of-connection weights and attempt to choose the heaviest

edges before the lighter ones.

There are a wide range of aggregation routines; we focus on the following important ones standard [72],
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pairwise [53, 54], and LAMG’s [46] aggregation. A typical aggregation routine used for more regular

meshes is what we will call “standard” aggregation. Standard aggregation first selects a dof with no ag-

gregated neighbors. This dof becomes a root, and all neighboring dofs become part of its aggregate. The

process repeats until no more dofs can be converted to roots. Remaining dofs are aggregated to a neigh-

boring aggregate. It is clear that this algorithm needs a filtered strength-of-connection matrix. Otherwise,

poorly connect dofs could become roots.

Pairwise aggregation, also known as heavy edge matching, is a routine that does not use a thresholded

strength-of-connection matrix [53]. It chooses an unaggregated dof and aggregates it with the closest

(by strength-of-connection) unaggregated neighbor. This is repeated until no unaggregated dofs exist.

Stopping here can yield good aggregates, but this coarsening is not aggressive enough. The coarse grids

are often too large to make up for the good convergence factors. To make larger aggregates, the process

can be repeated by joining pairs of aggregates [54]. Although this routine does not require thresholding,

it does not work well on problems with irregular connectivity. For example, star-like connectivity in the

strength-of-connection graph results in only one of many dofs getting aggregated.

An example of an aggregation routine that works on irregular connectivity is the routine from LAMG

[46]. This routine picks dofs with strong connections as “seeds” which form the center of an aggregate.

Dofs with strong connections to a seed are aggregated with it. This is repeated in rounds with a decreasing

threshold for what constitutes a strong connection until all dofs are aggregated. This avoids a need for an

explicit threshold for the strength-of-connection matrix and also avoids problems pairwise-aggregation

faces on irregular connectivity.

These three examples are in no way all the existing aggregation algorithms. Although “standard” ag-

gregation is used in many places, it has many variants and no definitive version. On more unstructured

problems, the list of aggregation routines is vast. The heuristics used for choosing a routine depend on the

structure the solver expects and the type of problem being solved.

Aggregation routines face another constraint in that they need to be used in parallel environments. Be-

cause multigrid solve time scales linearly with problem size, it is a good choice for large problems. To

decrease solve times, large problems are solved in parallel on distributed memory machines. Most of multi-
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grid is readily amenable to a distributed memory environment. Prolongation construction, coarse grid

construction, smoothing (excluding Gauss-Seidel smoothing [3, 9]), and residual evaluation are all straight

forward linear algebra, so using a distributed linear algebra library gives parallelism without any extra

work. The one part of multigrid that is not trivially made parallel is aggregation. Aggregates can be formed

on a per process basis, but ignoring connections that span processes results in poor performance (espe-

cially in the limiting case where there is only one dof per process) [71]. One solution is to use a parallel

maximum independent set algorithm to choose aggregates from the strength-of-connection graph [23, 31].

Parallel maximum independent sets can form aggregates regardless of the distribution of dofs between

processors. However, parallel maximum independent sets performs poorly in places were connectivity is

irregular because aggregate sizes are too large.

1.3.2 Strength of Connection

The strength-of-connection metric determines how “close” any two dofs are. The difficulty is deciding

what constitutes “close.” Two factors make this more complicated: 1. the optimal closeness metric may

depend on non-local information and 2. closeness affects the structure of the coarse levels and hence affects

closeness on the coarse levels.

The simplest strength-of-connection metric to use is entries from the linear system itself. If the connec-

tivity is regular (fixed degree) and the problem is not anisotropic, this can be a good metric. However,

it breaks down when the problem is not tightly coupled in a uniform, grid-aligned direction. Many more

sophisticated strength-of-connection metrics have been proposed. Some are problem-dependent and use

supplemental information, while others are black-box and only use entries in the linear system itself. Met-

rics that are able to exploit some extra information from the problem are often more accurate than those

that do not. Like in many other parts of multigrid, using extra information leads to improved performance

over using a black-box approach, but is not out of the box compatible with new applications.

One way to construct robust strength-of-connection metrics in a black-box approach is to use test vectors.

These are vectors filled initially with random data (usually in the range [−1, 1]) and smoothed on Ax = 0

(using the smoother that will be used in the multigrid method). Comparing entries in these vectors gives
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an idea for how quickly information is dispersed on the local scale [56]. If two entries have close to the

same value, then it is likely that they are closely linked. In the smoothing sense these entries are effectively

solved using a couple applications of the smoother, so they should be grouped together on the coarse level.

On the other hand, if these two entries have dissimilar values, it is likely that they are not closely linked.

A smoother does not solve them, so keeping them separate on the coarse level means they can be solved

there. A number of vectors are used in order to make the metric more robust in the face of randomness.

The more vectors we use, the closer we get to the true mean value, but each vector increases the cost of the

setup phase. Normally, a small (less than 10) number of vectors are used [46]. The choice of how many

times to smooth the test vectors can be important. Smoothing the vectors too much makes the function

locally uniform so the distance measures capture no information (they become zero) [56]. However,

smoothing only once may not be enough as the test vectors still appear to be random.

Algebraic distance is a good example of a strength-of-connection metric that uses test vectors:

1

algebraic distanceuv
=

(
K∑
k=1

∣∣∣Xk
u −Xk

v

∣∣∣p)
1
p

.

X is the n × K matrix of K test vectors mentioned above [58, 61]. Algebraic distance can have issues

with complicated connectivity. Livne and Brandt show that in the case of two connected hubs (high degree

dofs), algebraic distance incorrectly marks the hubs as close [46]. To fix these problems, they propose

affinity:

affinityuv =
|(Xu, Xv)|2

(Xu, Xu)2(Xv, Xv)2
, (1.7)

(X,Y ) =

K∑
k=1

XkY k, (1.8)

which scales the metric based on the relative magnitudes of the dofs [46].

1.3.3 AMG as a Preconditioner

AMG can be used as a stand alone solver, but it often provides faster and more robust convergence when

used as a preconditioner for a Krylov method [66]. In order to solve Ax = b, the Krylov method (usually

conjugate gradients [32] or GMRES [60]) is applied to MAx = Mb, where M is a single AMG cycle, such
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as a V-cycle or W-cycle. This choice is called left preconditioning because M is applied on the left side of

the operator. The convergence of the Krylov method will depend on the spectrum of MA, converging in a

number of iterations bounded by square root of the condition number. The goal of M , then is to reduce the

condition number of A (assuming A is symmetric).

1.3.4 Measuring Performance

In order to evaluate the performance of a solver relative to another solver, a performance metric is needed.

Runtime is often used, but it is dependent on the implementation of the algorithms (for example, a MAT-

LAB implementation would probably be slower than a C++ implementation). Instead, we will use work

per digit of accuracy (WDA) to measure performance:

WDA =
−work
log10∆r

, (1.9)

r = b− Lx, (1.10)

∆r =
‖rfinal‖
‖rinitial‖

, (1.11)

work =
total FLOPS

FLOPS to compute the residual on finest level
. (1.12)

WDA measures how much work is required to reduce the residual by an order of magnitude. r is the

residual, and ∆r is the change in residual norm from an initial solution to a final solution. Work is ex-

pressed in terms of the number of FLOPS required for a solve divided by that required to compute a resid-

ual on the finest level. This measure is also proportional to required memory transfers and is typically

approximated in terms of the number of nonzeros in the sparse operators Al, Rl, Pl. WDA only measures

the efficiency of a single solve; it does not take the setup phase into account. WDA also does not account

for parallel scalability.

1.4 Debugging Multigrid Performance

Multigrid methods are notoriously hard to write and debug. Small changes in the implementation can

lead to large changes in the rate of convergence. This section discusses some methods for debugging poor
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multigrid performance.

Multigrid literature contains many bounds on convergence rates [47]. Two useful bounds are the strong

and weak approximation properties. The Strong Approximation Property (SAP) is defined as

min
u
||e− Pu||2A ≤

C

||A||
〈Ae,Ae〉,

where e is some fine grid error and C is a constant bounding convergence speed [47, 59, 67]. Satisfying

the SAP guarantees convergence for a multigrid V-cycle. The SAP gives a constraint on the modes that the

coarse grid needs to solve well. Specifically, those modes where ||Ae|| is small must be exactly reproduced

by the coarse grid. In the multigrid literature, these modes are called the near-nullspace. Using a restriction

of the near-nullspace to each aggregate in the prolongation operator is a common technique for addressing

these modes.

The Weak Approximation Property (WAP) is defined as

min
u
||e− Pu||2 ≤ C

||A||
〈Ae, e〉.

The WAP is necessary for convergence but provides a more local interpretation of what is required. Like

the SAP, the WAP also indicates that near-nullspace modes need to be reproduced on the coarse grids.

Both the strong and weak approximation properties do not directly provide e vectors which need to be

approximated exactly. However, they can be used to compare the impact of various near-nullspace vectors

if they are already known.

1.4.1 Compatible Relaxation

Compatible relaxation is a tool for finding slowly converging modes on a given level. Compatible relaxation

was originally developed as a relaxation scheme for multigrid [18], but it can also be used as a technique

for evaluating the effectiveness of the coarse grid correction in a multigrid scheme [27]. It can be applied

to both classical and aggregation based multigrid methods. The idea is to project the coarse space out of

the fine level space leaving a “smoother” space [27]. This space should be within the range quickly relaxed

by the smoother. If not, the smoother either needs to be improved to cover this space or the prolongation

operator needs to be improved to interpolate these modes.
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Compatible relaxation provides the following bound on convergence speed of a multigrid algorithm.

Given a matrix S which goes from Rn− > Rnf , where nf = n − nc (nf is the smoother space), and a

smoothing matrix M, the convergence factor of our multigrid scheme will be bounded by

1

λmin ((STMS)−1(STAS))
[27].

For our problems, we either use M = diagonal(A) or M = block_diagonal(A). Essentially, the slow-

est to converge mode is the eigenvector associated with the smallest eigenvalue of the smoother applied

to the smoother space variables. For the graph Laplacian problem, finding the small eigenvalues of

(STMS)−1(STAS) is hard. Instead, we find the eigenvalues of STM−1SSTAS. For bundle adjust-

ment we use (STMS)−1(STAS).

The question remains: how to construct S? Falgout and Vassilveski present a way to construct S for a

coarse-fine splitting [27], but we are interested in aggregation based methods. For an aggregation based

method with piecewise-constant prolongation, the smoother space is modes on the aggregate that have

mean zero (as piecewise constant aggregation makes the coarse level the mean of the aggregate). For non

piecewise-constant prolongation, the following suffices:

UaggVaggWagg = I −Bagg(B
T
aggBagg)

−1BT
agg for every aggregate agg, (1.13)

Lagg = Ui ∀ Vaggi > 0, (1.14)

S =


L1 0 0

0
. . . 0

0 0 Ln

 . (1.15)

We apply the SVD to drop singular vectors in the aggregate and to orthogonalize. If we look at the smallest

eigenvectors of (STMS)−1(STAS) we can get an idea of which aggregates are bad, or if we should

aggregate more. If the large components of the smallest eigenvectors are limited to one aggregate, then

it is likely that that aggregate should be split or not formed in the first place (as is seen in figures 1.4.1

and 1.4.1). On the other hand, if there are long range modes in the smallest eigenvectors, then the coarse

space is not accurately representing the near-nullspace. For example, on the graph Laplacian, the smallest
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eigenvectors often have most of their magnitude in a single aggregate. This can inform a splitting of the

aggregate: the sign of the vector indicates which resulting aggregate each dof should be put in. Looking

at such splitting can inform the choice of heuristics or improvements for aggregation. Furthermore, if we

see a clustering of small eigenvalues, it could indicate that there is a fundamental flaw in how vertices are

aggregated.
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Figure 1.1: Plot of magnitude of each component in the smallest compatible relaxation eigenvector of a

bundle adjustment linear system. Only a few components in the vector have a large magnitude, indicating

there are no long range effects present.

Figure 1.2: Plot of smallest eigenvector components on a per degree of freedom basis in a bundle

adjustment linear system. Color of points indicates which aggregate they belong to. Black lines indicate

direction of movement of the dof according to the smallest eigenvector. All of the large components are in

a single aggregate, indicating that this aggregate should either be split or a stronger smoother should be

used. There is no clear partition of the aggregate using the small eigenvector components, leading us to

believe that a stronger smoother is needed.
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1.5 Distributed Memory Parallelism

Problems in both Graph Laplacians and Bundle Adjustment can be very large—up to billions of nonzeros.

At this scale, problems can no longer fit in memory on a single computer, or if they can, solve times take

too long. To be able to solve larger problems, multi-process distributed memory environments is a must.

Distributed memory parallelism is normally used on clusters of computers connected via a high speed link.

In this environment, the problem is split across many processes of the cluster—each process is given a

subset of the degrees of freedom of the whole problem. In distributed linear algebra, the communication

is block synchronous: each process computes on its local block of the matrix and then sends its portion

of the computation to relevant other processes. Writing distributed memory algorithms is challenging as

they require thought in how the data is laid out between processes and how the communication between

processes is structured. The data needs to be laid out in such a way that each process has about the same

amount of work to do. If there is too much of a difference, then the processes with less work spend most of

their time waiting for the processes with more work. This is called load imbalance.

In distributed memory environments scaling properties of techniques are important. Ideally, as more

processes are used, solution time will decrease proportionally. However, in most cases, solution time will

scale less than optimally. We will try to measure how close our algorithms come to optimality. There

are two standard ways of measuring scalability: weak and strong scaling. In weak scaling the amount

of work per process is held constant while the number of processes increases. Weak scaling is useful in

approximating the amount of inherent serial work in a problem. Strong scaling maintains a constant total

amount of work and varies the number of processes. Strong scaling is useful in evaluating the number of

processes that should be used for given problem to get the desired time to solution.



Chapter 2

LigMG — A Parallel Graph Laplacian Solver

This chapter is finished work accepted at PASC ’18 done in collaboration with Jed Brown [38]. This material is

based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific

Computing Research under Award Number DE-SC0016140. This research used resources of the National Energy

Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of

the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

2.1 Related Work

A variety of different solvers that have been proposed for solving large sparse graph Laplacian systems.

Some are general purpose solvers, whereas others are tailored specifically for graph Laplacians.

2.1.1 Direct Solvers

Direct solvers can be a good choice for solving systems to a high accuracy. Some direct solvers for sparse

systems, such as SuperLU_DIST [43] and MUMPS [6], function in distributed memory. However, none of

these solvers performs well on large graph Laplacian systems because “small” vertex separators [30] do

not exist. Because we are interested in very large systems, we require that our solver scales linearly in the

number of nonzeros in the matrix, which these direct solvers do not.
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2.1.2 Simpler Preconditioners

Iterative solvers such as conjugate gradients, coupled with simple preconditioners like Jacobi or incomplete

Cholesky, sometimes perform well on highly irregular graphs. For example, Jacobi (diagonal) precondition-

ing is often sufficient for social network graphs with small diameter and Incomplete Cholesky may provide

more robustness, but tends to exhibit poor parallel scalability.

2.1.3 Theoretical Solvers

A variety of theoretical Laplacian solvers have been proposed in literature starting with Spielman and

Teng’s 2003 paper [65]. To our knowledge, no working implementation of this algorithm exists. Since

then, many more theoretical linear solvers have been proposed. Most use either a support graph or low

stretch spanning tree sparsifier as a preconditioner for a Krylov iterative solver. Several serial implementa-

tions of these ideas exist in “Laplacians.jl” a package written by Daniel Spielman [64].

Kelner et al. later proposed a novel technique with a complexity of O(m log2 n log logn log (ε−1)) [34]

(n is the number of vertices, m is the number of edges, ε is the solution tolerance). An implementation of

this algorithm exists but appears to not be practical (as of yet) [16].

2.1.4 Practical Serial Solvers

Three practical graph Laplacian solvers have been proposed: Koutis and Miller’s Combinatorial Multigrid

(CMG) [39], Livne and Brandt’s Lean Algebraic Multigrid (LAMG) [46], and Napov and Notay’s Degree-

aware Rooted Aggregation (DRA) [49]. All use multigrid techniques to solve the Laplacian problem.

Combinatorial Multigrid, like much of the theoretical literature, takes a graph theoretic approach. It

constructs a multilevel preconditioner using clustering on a modified spanning tree [39]. Its main focus is

on problems arising in imaging applications. The spanning tree construction and clustering presented in

CMG do not lend themselves to a simple parallel implementation.

Lean Algebraic Multigrid uses a more standard AMG approach with modifications suited for Laplacian

matrices. Notably, it employs unsmoothed aggregation tailored to scale-free graphs, a specialized distance
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function, and a Krylov method to accelerate solutions on each of the multigrid levels. These changes

are not rooted in graph theory but produce good empirical results. Empirically, LAMG is slightly slower

than CMG but more robust [46]. LAMG’s partial elimination procedure and clustering process are both

inherently serial.

Degree-aware Rooted Aggregation applies a similar partial elimination technique to LAMG, except it is

limited to degree 1 vertices. Its performance relies on a combination of unsmoothed aggregation based on

vertex degree and a multilevel Krylov method called K-cycles[49]. A K-cycle is a multigrid W-cycle (one

can imagine a K-cycle with different cycle index, but we only consider K-cycles with a cycle index of 2)

with Krylov acceleration applied at each level. DRA’s aggregation (like LAMG’s) is inherently serial and

would require modifications for parallelism.

2.2 Main Contribution

Our solver uses an unsmoothed aggregation based multigrid technique with low degree elimination. Its

notable features are: 1. a matrix distribution that improves parallel performance but increases complexity

of aggregation and elimination algorithms 2. a parallel elimination algorithm using this matrix distribution

3. a parallel aggregation algorithm also using this matrix distribution. We started building our solver by

analyzing the performance of LAMG and its potential for parallelism.

2.2.1 Issues With a Parallel Implementation of LAMG

To understand what parts of LAMG we could adapt to a distributed memory setting, we ran LAMG on 110

graphs from the University of Florida Sparse Matrix Collection [25] while varying its parameters for cycle

index, smoother and iterate recombination (we would like to also vary the aggregation routine, but LAMG’s

energy unaware aggregation is not working in the MATLAB implementation). LAMG uses a cycle index

of 1.5, which is half way between a V-cycle and a W-cycle. Iterate recombination is a multilevel Krylov

method that chooses the optimal search direction from the previous solution guesses at each level. It is

similar in nature to K-cycles (see section 2.2.7). Our goal was to find which parts of LAMG had the largest
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effect on solver performance.

Figure 2.1 shows the result of these tests. Visually, Gauss Seidel smoothing and iterate recombination

together give the smallest WDA. Cycle index has a very small effect relative to smoother and iterate recom-

bination.

We applied a statistical analysis to LAMG’s performance with its features on and off. The largest change

in solver performance came from using Gauss-Seidel smoothing over Jacobi smoothing. On social network

graphs, Gauss-Seidel smoothing often performs much better than Jacobi smoothing. Iterate recombination

is the second most important factor. It helps improve performance on high diameter graphs such as road

networks. The least important factor is the 1.5 cycle index. Although it does slightly improve WDA, it is

much less important than Gauss-Seidel smoothing and iterate recombination.

Given the importance of Gauss-Seidel smoothing and iterate recombination, we would like to use them in

a parallel implementation. However, there are a couple of challenges with using these features in a parallel

implementation of LAMG:

(1) The power-law vertex degree distribution can cause large work and communication imbalances.

(2) LAMG’s low degree elimination is a sequential algorithm.

(3) LAMG’s energy-based aggregation is a sequential algorithm.

(4) Multilevel Krylov acceleration can be a parallel bottleneck.

(5) W-cycles exhibit poor parallel performance.

(6) Gauss-Seidel smoothing is infeasible in parallel.

2.2.2 2D Matrix Distribution

Our initial implementation used a vertex distribution of the graph: each processor owns some number of

rows in the Laplacian matrix. This initial implementation scaled very poorly as we increased the number

of processes. One process had many more edges than all the other processes, causing a work imbalance.

Using a partitioner can temporarily alleviate this problem, but in the limiting case (where each process
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Figure 2.1: Boxplots of the performance of serial LAMG [45] on 110 graphs from the University of

Florida Sparse Matrix collection [25]. Solver configuration (vertical axis) is a triple of smoother, iterate

recombination (or not), and cycle index. Performance is measured in terms of work per digit of accuracy

(see section 1.3.4). WDA accounts for work per iteration and number of iterations. Problems are solved

to a relative tolerance of 10−8. Each box represents the interquartile range of WDA for a given solver

configuration. The line and dot inside the box indicates the median WDA. Horizontal lines on either side of

the box indicate the range of WDA values. Dots outside the box indicate outliers.
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Figure 2.2: The distribution of directed edges in the graph (left) and adjacency matrix (right). The top

is a 1D vertex distribution, and the bottom is a 2D edge distribution. Each color corresponds to edges and

matrix entries owned by processor. Note that no process in the 2D distribution has all the out-edges or

in-edges for a given vertex.
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owns a single vertex), processes with hubs will have significantly more work than those without. Research

on scaling sparse matrix operations on adjacency matrices suggests that a more sophisticated distribution of

matrix entries is important. We use CombBLAS, which has demonstrated the scalability and load balancing

benefits of a 2D matrix distribution [21]. A 2D matrix distribution can be thought of as a partition of graph

edges instead of vertices. Computational nodes (or processes) form a 2D grid over the matrix (called a

processor grid). Each process is given a block of the matrix corresponding to its position in the grid (see

Figure 2.2). Vectors can either be distributed across all processes or just processes on the diagonal. In our

implementation, we found performance did not change with vector distribution, so we distribute them

across diagonal entries in the processor grid. The disadvantage of a 2D distribution is that it has higher

constant factors and poorer data locality.

CombBLAS expresses graph algorithms in the language of linear algebra. Instead of the usual multipli-

cation and addition used in matrix products, CombBLAS allows the user to use custom multiplication and

addition operations. We will follow the ⊕.⊗ notation used by GraphBLAS (the standardization effort of

CombBLAS)[35]. Here, ⊕ specifies the custom addition operator and ⊗ the multiplication. While an m× n

matrix A maps from Rn to Rm, a generalized matrix Â maps from Cn to Dm, where C and D may be

different.

(Av)i :=
∑
j

Aijvj , Usual matrix product (2.1)

(Â⊕.⊗ v)i :=
⊕
j

Âij ⊗ vj , Generalized matrix product (2.2)

Â ∈ Bm×n, v ∈ Cn, (2.3)

⊗ : B× C→ D, ⊕ : D× D→ D. (2.4)

Our operators are similar in structure to a semiring, but they permit different types of elements in the

input matrix and the input and output vectors. If we structure our algorithms in terms of generalized

matrix-vector products, we can piggyback on the proven performance of CombBLAS. However, if we can-

not express all parts of an algorithm using this linear algebraic approach, we must keep in mind that no

computational node has a complete view of all the edges to and from any vertex. Implementing an arbi-
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trary vertex neighborhood operation, such as choosing the median of neighbors, would require potentially

non-scalable custom communication.

2.2.3 Random Vertex Ordering

A 2D matrix distribution alleviates communication bottlenecks and some load balancing difficulties, but

the processes responsible for diagonal blocks are often found to have many more nonzeros than typical

off-diagonal blocks. For example, social network often have a couple of large degree “hubs” that are con-

nected to many other vertices. These vertices correspond to an almost dense column and row in the graph

Laplacian. Often a single process will end up with a few hubs and have 10x (or more) edges than other pro-

cesses. A simple technique to better balance the workload is to randomly order vertices. This trades data

locality for better load distribution. More sophisticated techniques exist for 2D matrix partitioning [15],

but we found that a random distribution is sufficient for acceptable load balance. We found that random

vertex ordering increased not only asymptotic parallel scalability but also performance for relatively small

process counts. We apply this randomization only to the input matrix; we do not re-randomize at coarser

levels.

2.2.4 Parallel Low-Degree Elimination

Low-degree elimination greatly reduces problem complexity in graph Laplacians, especially those arising

from social networks. Like LAMG, we eliminate vertices of degree 4 or less.

The main difficulty in adapting low-degree elimination to a distributed memory system is deciding which

vertices to eliminate. If we had a vertex centric distribution, each process could locally decide which of

its local vertices to eliminate. However, we have a 2D edge distribution, so we will instead structure our

elimination in terms of linear algebra and allow CombBLAS to do the heavy lifting.

Our algorithm for low-degree elimination is detailed in Algorithm 3. It essentially boils down to two

steps. First, mark all vertices of degree 4 or less as candidates for elimination. Then, for each candidate,

check whether it has the lowest hash value among all neighboring candidates. If it has the lowest hash

value, it will be eliminated. The hash value is a hash of the vertex’s id. We use a hash of the id instead of
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the id itself in order to prevent biases that might occur when using a non-random matrix ordering.

In linear algebraic terms, choosing vertices to eliminate can be accomplished by creating a vector that

marks each vertex as a candidate or not (line 2 of Algorithm 3) and then multiplying said vector with

the Laplacian matrix using a custom ⊗ and ⊕ (line 2). The ⊗elim filters out matrix entries that are not

candidates and neighbors:

a⊗elim c =


c, if a 6= 0,

∅, otherwise,

where c = ∅ is used to indicate that a vertex should not be considered.

The ⊕elim chooses the candidate with the smallest hashed id,

x⊕elim y =


x, if hash(x) ≤ hash(y),

y, if hash(x) > hash(y),

where hash(∅) =∞.

Algorithm 3 Determine vertices to eliminate

1: function Low-Degree Elimination(L ∈ Rn×n)

2: candidatesi ← i if degree(Vi) ≤ 4 else ∅, i ∈ V
3: z ← L⊕elim.⊗elim candidates

4: if zi = i then eliminate Vi

5: end function

We use the Laplacian L so that the neighborhood of each vertex contains itself. Each entry zi corre-

sponds to the neighbor of vi that is a candidate and has the lowest hashed id. If zi = i, then we know that

vi is the candidate with the smallest hash among its neighbors (line 4) and can be eliminated. Let F denote

eliminated vertices and C be vertices that have not been eliminated. Following Livne and Brandt [46],

we express elimination in the language of multigrid. We first introduce a permutation Π of the degrees of

freedom such that

Ll = Π

LFF LFC

LT
FC LCC

ΠT ,
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which admits the block factorization

Ll = Π

 I

LT
FCL

−1
FF I


LFF

Ll+1


I L−1

FFLFC

0 I

ΠT

in terms of the Schur complement

Ll+1 = LCC − LT
FCL

−1
FFLFC .

Note that LFF is diagonal so its inverse is also diagonal and that we can alternately express Ll+1 =

P T
l LlPl in terms of the prolongation

Pl = Π

−L−1
FFLFC

I

 .

Inverting the block factorization yields

L−1
l = Π

I −L−1
FFLFC

0 I


L−1

FF

L−1
l+1


 I

−LT
FCL

−1
FF I

ΠT ,

= PL−1
l+1P

T +Π

L−1
FF 0

0 0

ΠT ,

which is an additive 2-level method with F -point smoother

Fsmooth(x, b) = Π

L−1
FF 0

0 0

ΠT b.

Rather than applying L−1
l+1 exactly, we approximate it by continuing the multigrid cycle.

The ids of eliminated vertices are broadcast down processor rows and columns. Each process constructs

entries of LFC and L−1
FF that depend on its local entries in Ll. These constructed entries are then scattered

to the processes that own them in Pl. Alternatively, we could construct Π, LFC , and L−1
FF explicitly and

use them to build Pl.

Our candidate selection scheme is not as powerful as the serial LAMG scheme. The serial scheme will

eliminate every other vertex of a chain. In the best case we do the same, but in the worst case we eliminate

only one vertex if the hash values of vertices in the chain are in sequential order. To address this issue, we
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can run low-degree elimination multiple times in a row to eliminate more of the graph. In practice, we find

one iteration is sufficient to remove most of the low degree structure.

We apply low-degree elimination before every aggregation level and only if more than 5% of the vertices

will be eliminated.

2.2.5 Parallel Aggregation

Our parallel aggregation algorithm (Algorithm 4) uses a strength-of-connection metric, S, to determine

how to form aggregates. It indirectly determines how likely any two vertices will be clustered together. We

use the affinity strength-of-connection metric proposed by Livne and Brandt in the LAMG paper [46]. To

construct the strength-of-connection matrix, S, we smooth four vectors three times each. The relevant parts

of the smoothed vectors are broadcast down communication grid rows and columns. Each process then

constructs its local part of the matrix using the affinity metric:

L ∈ Rn×n, y ∈ Rn×m,m� n, random entries, (2.5)

x := smooth on Ly = 0, (2.6)

Cij :=


0, if Aij = 0 or i = j,

|
∑m

k=1 xikxjk|2

(
∑m

k=1 xikxik)
2(
∑m

k=1 xjkxjk)
2
, otherwise,

(2.7)

Sij :=
Cij

max (maxs 6=iCis,maxs 6=j Cs,j)
, (2.8)

where A is the adjacency matrix. The smoothing we use is three iterations of Jacobi smoothing. The total

cost of creating S is 4 vectors ∗ 3 smoothing iterations, for 12 matrix-vectors multiplies total. Currently,

we smooth each vector separately and do not exploit any of the parallelism available in smoothing multiple

vectors together.

The construction of Cij is entirely local because C has the same distribution as A. Constructing S

requires communication along processor rows and columns to find the largest nonzero of C for each

column and row in the matrix. Note that S has 0 diagonal.

Our aggregation algorithm uses a voting scheme in which each vertex votes for which of its neighbors it

would like to aggregate with. A vector status contains a state ∈ {Seed,Undecided,Decided} and an index
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Algorithm 4 Aggregation

1: function Aggregation(S ∈ Rn×n)

2: statusi ← (Undecided, i), for i in 1..n
3: votesi ← 0, for i in 1..n
4: for iter in 1..10 do
5: status, votes← Aggregation-Step(S, status, votes, 0.5iter)
6: end for

7: for i in 1..n do

8: (·, j)← statusi

9: aggregatesi ← j
10: end for

11: return aggregates

12: end function

13: function Aggregation-Step(S, status, votes, filter-factor)
. status is a vector with elements of type (State, Index)

. S is the strength-of-connection matrix

14: Sfilt ← Remove nonzeros < filter-factor from S
15: d← Sfilt ⊕agg.⊗agg status

16: local_votes← Sparse map containing votes for vertices

17: for i in 1..n do

18: (s, j, w)← di
19: if s = Seed then

20: statusi ← (Decided, j) . Found a neighboring seed, Vi is aggregated with Vn

21: else if s = Undecided then

22: local_votes[j]← local_votes[j] + 1 . No neighboring seed, Vi votes for Vn

23: end if

24: end for

25: local_votes← reduce_by_key(+, local_votes) . Communicate local votes

26: votes← votes+ local_votes . Update persistent votes counts

27: for i in 1..n do

28: if votesi > 8 & statusi = (Undecided, i) then
29: statusi ← (Seed, i) . Vertices with enough votes become Seeds

30: end if

31: end for

32: return status, votes, aggregates
33: end function
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for each vertex,

statusi :=



(Seed, i), Vertex i is a Seed,

(Undecided, i), Vertex i has not yet joined an aggregate,

(Decided, j), Vertex i is aggregated with Seed j.

Initially, statusi = (Undecided, i). In each voting iteration, each Undecided vertex either aggregates

with a neighboring Seed (and becomes Decided) or votes for a neighboring Undecided vertex to become

a Seed. If a vertex is voted for enough times, it will turn into a Seed. The strength-of-connection matrix

determines which neighboring vertex is aggregated to or voted for. For the first round of aggregation, we

only consider very strong connections (> 0.5). We gradually reduce this bound in subsequent iterations

(Livne and Brandt apply a similar technique in LAMG [46]). The vertices’ choice of neighbor is expressed

as a matrix-vector product S ⊕agg.⊗agg status with

w ⊗agg (state, i) :=


(state, i, w), if w 6= 0,

(Decided,−1, 0), otherwise,

(2.9)

(statea, ia, wa)⊕agg (stateb, ib, wb) :=



(statea, ia, wa), if statea = stateb & wa ≥ wb,

(stateb, ib, wb), if statea = stateb & wa < wb,

(statea, ia, wa), if statea > stateb,

(stateb, ib, wb), if statea < stateb,

(2.10)

where Seed > Undecided > Decided. Note that the input vector contains pairs, whereas the output vector

contains 3-tuples.

The votes for each vertex are tallied using a sparse reduction that has the same communication structure

as a matrix-vector product. Our implementation uses an allreduce because it has lower constants and is not

a bottleneck. Using the tallied votes, we update the status vector with new roots and aggregates. The vote

counts are persisted across voting iterations so that vertices with low degree may eventually become seeds.

We choose to do 10 voting iterations, and we convert Undecided vertices to Seeds if they receive 8 or more
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votes. Both these numbers are arbitrary. In practice, we find that performance is not sensitive to increasing

or decreasing these constants by moderate amounts.

The result of aggregation is a distributed vector v, where vertex i is part of aggregate vi. We perform

a global reordering so that aggregates are numbered starting at 0. We construct R by inserting Rvjj =

1, where j is in the locally owned portion of v, then scattering to a balanced 2D distribution. This 2D

distribution is similar to L, except each process has a rectangular local block instead of a square one.

Rij :=


1, if vj = i (Vj is in aggregate i),

0, otherwise.

(2.11)

P, := RT , Ll+1 := RlLlPl. (2.12)

2.2.6 Smoothing

In general, Gauss-Seidel smoothing is the best performing smoother on graph Laplacians (section 2.2.1

provides more details on Gauss-Seidel vs Jacobi performance). However, its parallel performance on graph

Laplacians is very poor. Most processes have an overwhelming amount of connections that reference values

outside of the local block of the matrix, and the graph cannot be colored with a reasonable number of

colors. Our resulting choice of smoother is Chebyshev/Jacobi smoothing [2] because it is stronger than

(weighted) Jacobi with equivalent parallel performance. Instead of applying k iterations of a smoother, we

use one application of degree k Chebyshev smoothing. We choose our lower and upper bounds because .3

and 1.1 times the largest eigenvalue as estimated by 10 Arnoldi iterations [7] (we include these iterations

in our setup cost).

2.2.7 K-cycles

We would like to include some form of multilevel Krylov acceleration because it improves solver robustness

(see section 2.2.1 for more details). We implemented K-cycles as described by Notay and Vassilevski

in “Recursive Krylov-based multigrid cycles” [55] and used in Napov and Notay’s DRA [49]. At each

aggregation level in our multigrid hierarchy, we perform a number of Flexible Conjugate Gradient (FCG)
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[52] iterations using the rest of the hierarchy as a preconditioner. We do not apply Krylov acceleration to

elimination levels because they exactly interpolate the solution from the coarse grid.

2.3 Numerical Results

Our solver uses a V-cycle or K-cycle with one iteration of degree 2 Chebyshev smoothing before restriction

and one iteration of degree 2 Chebyshev smoothing after prolongation. The V-cycle is used as a precon-

ditioner for Conjugate Gradient (FCG when using K-cycles). Our solver is implemented in C++ and uses

CombBLAS [21] for sparse linear algebra and PETSc [10, 11] for Chebyshev smoothing, eigenvalue estima-

tion, and Krylov methods.

Our numerical tests were run on NERSC’s Edison and Cori clusters. Edison is a Cray XC30 supercomputer

with 24 “Ivy Bridge” Intel Xeon E5-2695 v2 cores per node and a Cray Aries interconnect. Cori is Cray

supercomputer with 36 “Haswell” Intel Xeon E5-2698 v3 cores per node and a Cray Aries interconnect. For

each test, we run four MPI processes per physical node in order to obtain close to peak bandwidth.

We solve to a relative tolerance of 10−8. We use a random right hand side with the constant vector

projected out. We also tested with a right hand side composed of low eigenmodes but did not notice any

difference in performance compared to a random right hand side. The coarsest level size is set to have no

more than 1000 nonzeros in L. Our solver uses somewhere from 20 to 40 levels depending on the problem.

In order to ensure enough work per process, we use a smaller number of processors on coarser levels if the

amount of work drops below a threshold (if nnz(L)/10000 < number of processors). The coarsest level

always ends up on a single process.

2.3.1 Comparison to Serial

We compared our parallel solver to Livne and Brandt’s serial LAMG implementation in MATLAB [45, 46].

It is hard to fairly compare single threaded performance between our solver and LAMG. One or the other

could be better optimized, or choice of programming language might make a difference. To provide a fair

comparison, we measure the work per digit of accuracy of each solver.
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Figure 2.3: Boxplots of solver performance in various configurations on a selection of 110 graphs from

the University of Florida Sparse Matrix Collection [25]. Performance is measured in terms of work per

digit of accuracy (see section 1.3.4). WDA accounts for work per iteration and number of iterations. The

last number in the solver configuration indicates the cycle index. All solves to a relative tolerance of 10−8.

LAMG with Jacobi smoothing, no recombination, and cycle index 1 has many undisplayed outliers because

they fall well above 100 WDA.
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In general, our method exhibited poorer convergence factors than the serial LAMG implementation. We

expect that our solver performs worse because we have made multiple concessions for parallel scalability.

These changes are:

(1) No energy-based aggregation

(2) Chebyshev smoothing (versus Gauss-Seidel)

(3) No 1.5 cycle index

(4) No multilevel Krylov acceleration (for V-cycles)

Figure 2.3 shows the performance (measured in terms of WDA) of serial LAMG and our solver. The

fourth line shows LAMG with all of its parallel-unfriendly features enabled. The third line shows LAMG

without these features (but using LAMG’s standard aggregation and elimination). The first line is our solver

without K-cycles and the second line with K-cycles. Our solver has a higher median WDA and variance than

LAMG with all features enabled. Our solver is not as robust and has more outliers. Most of these outliers

are road networks. A couple of graphs have a fairly high WDA with our solver but are solved quickly

by LAMG. This is expected because we have made concessions in order to achieve parallel performance.

However, our solver performs much better than LAMG with parallel friendly features (Jacobi smoothing

and no recombination).

Also interesting to note is the small difference in WDA of our solver with and without K-cycles. K-

cycles have low variance, and hence are more robust, but median performance is not much improved.

However, this small gain in WDA is not worth the high parallel cost of K-cycles (as seen in Figure 2.4).

On the hollywood graph, K-cycles are clearly slower and scale worse than V-cycles. K-cycles need inner

products on every level of the cycle (as with Krylov smoothers), which require more communication. The

W-cycle structure of K-cycles also causes a parallel bottleneck. The coarsest level is visited 210 − 211 times,

which results in lots of sequential solves and data redistributions. Because K-cycles appear worse than

V-cycles (especially when compared to the marginal robustness they provide), we use V-cycles by default in

our solver. All following performance results for our solver use V-cycles.
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Figure 2.4: Loglog plot of strong scaling of our solver with K-cycles and with V-cycles on the hollywood

graph (1,139,905 vertices, 113,891,327 edges) on Edison. Numeric labels next to points indicate number of

processes for a given solve. There are 21-23 multigrid levels so the coarsest level is visited 210 − 211 times

with an index 2 cycle. The coarse level solves and redistribution become a parallel bottleneck.
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2.3.2 Strong Scaling

To measure the scalability of our approach, we measured strong scaling on four real world social network

graphs using up to 576 processors. We choose these four graphs because they are some of the largest real

world irregular graphs that we can find and are infeasible to solve on a single process. Many of the graphs

in the 110 we use for serial experiments are small enough that solving them on a single process is fast

enough.

Our largest graph, com-friendster, (from the Stanford Large Network Dataset Collection [41, 75]) has 3.6

billion nonzero entries in its Laplacian matrix. Solving a Laplacian of this size on a single node is infeasible

(even if it could fit in memory, the solve time would be much too long). Figure 2.5 shows the efficiency,

measured as

nnz(L)

TDA · number of processes
, TDA :=

−time

log10∆r
,

versus solve time (where TDA is time per digit of accuracy). We do not use a percentage for efficiency

because the choice of base efficiency makes it difficult to compare different solves on different graphs. A

horizontal line indicates that the solver is scaling optimally (increasing machine size moves to the left).

The largest graph (com-friendster) appears to have better scaling than the smaller graphs. com-orkut and

hollywood have a much higher efficiency than com-friendster and com-lj because com-orkut and hollywood

have a lower WDA. If we normalize by WDA on both axes, so the y axis becomes

nnz(L)
solve time
work unit

· number of processes
,

(this is similar to a “per iteration” metric), then we get Figure 2.6. Normalizing by WDA compares effi-

ciency independent of how difficult it is to solve each graph. The smaller graphs are solved faster but scale

poorly with increasing number of processes. com-friendster takes longer to solve because it is larger and ef-

ficiency is somewhat lower (likely due to poor cache behavior with the random ordering) but scales better

than the smaller graphs. The poor scaling for smaller graphs is explained by having less work per process,

resulting in a solve phase dominated by communication.

Our high setup cost (relative to solve time) also increases the number of repeated solves necessary.

The majority of the setup phase is spent in the finest level triple product (P TLP ), which is handled by
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a generic CombBLAS matrix-matrix product using +.∗. A matrix-matrix product that exploits the special

structure of R and P would lower setup times. Still, these setup times are reasonable and can be amortized

over multiple solve phases (when possible).

For a complete view of the scalability of our solver, we would like to measure weak scaling. However, it

is difficult to find a fair way to measure weak scaling on graphs. We could generate a series of increasingly

large random graphs, but in practice, most solvers perform much better on random graphs than real world

graphs.

2.4 Conclusions

We have presented a distributed memory graph Laplacian solver for social network graphs. Our solver uses

a 2D matrix distribution combined with parallel elimination and unsmoothed aggregation to demonstrate

parallel performance on up to 576 processes. Our novel aggregation algorithm can handle arbitrary ma-

trix distributions and forms accurate aggregates while controlling coarse grid complexity on a variety of

irregular graphs. The parallel elimination algorithm presented uses generalized matrix products to find

elimination candidates independent of matrix distribution. To our knowledge, this is the first distributed

memory multigrid solver for graph Laplacians. It enables solving graph Laplacians that would be infeasible

to solve on a single computer.

Our solver’s robustness is behind that of serial LAMG (as outlined in section 2.3.1) but outperforms

the natural parallel extensions of LAMG (no iterate recombination, Jacobi smoothing, and cycle index 1).

Further improvement is a topic for future research. Our solver performs well on social network graphs, but

WDA is sometimes high for more regular graphs such as road networks. Many such graphs also admit a

vertex partition with low edge cut, in which case our 2D distribution may be unnecessary. Extending our

solver to handle scaled graph Laplacians (used by some applications) and unsymmetric graphs are other

areas for future research.



Chapter 3

Synthetic Bundle Adjustment Problem Creation

Figure 3.1: Left: 3D model of Zwolle (Netherlands). Right: generated synthetic bundle adjustment

dataset.

To test linear solvers for bundle adjustment (chapter 4), we need datasets to test against. Only a couple of

real-world datasets are publicly available, namely the Bundle Adjustment in the Large datasets1 [5] and the

1DSFM datasets2 [73]. The largest of these datasets contains 15 thousand cameras. As we are interested

in evaluating scaling of our algorithms, we require much larger datasets. Also, most of these datasets are

“community photo” style, i.e. there are many pictures of the same object. Furthermore, all of these datasets

1http://grail.cs.washington.edu/projects/bal

2http://www.cs.cornell.edu/projects/1dsfm

http://grail.cs.washington.edu/projects/bal
http://www.cs.cornell.edu/projects/1dsfm
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contain too many outliers: long range effects are not exposed to the linear solver. We would like datasets

with more varied camera counts and visibility structure similar to what we would expect from streetview,

so we generate a series of synthetic datasets with these properties.

There are a couple ways we could create our own datasets. We could take existing image datasets, apply

a full SfM pipeline, and then apply our bundle adjuster. The resulting datasets should be similar to real

world datasets, but running a full SfM pipeline takes a long time. The visibility structure of these datasets

is also limited by the structure of the images we use. It is also hard to tell how accurate the bundle adjuster

is as there might not be ground truth information for the images. An alternative approach is to generate a

synthetic dataset. Synthetic datasets have the benefit of being quick to generate and easy to obtain ground

truth info for. They also make it easy to generate a set of similar datasets of different sizes in order to test

scalability. Using synthetic datasets also allows us to compare different kinds of noise to see where our

algorithm succeeds and falls short.

We generate a ground truth (zero error) bundle adjustment dataset by taking an existing 3D model of a

city and drawing potential camera paths through it. We generate random camera positions on these paths,

then generate random points on the geometry and test visibility from every camera to every point. We can

control the number of cameras and the number of points to generate datasets of different sizes. By choosing

different 3D models or different camera paths, we can change the visibility graph between cameras and

points. For our datasets, we use a 3D model of Zwolle in the Netherlands3. Figure 3.1 shows the 3D model

and one of the more complicated datasets we generated.

These datasets do not contain any error, so we add noise into each. The straight forward approach of

adding Gaussian noise directly to the camera and point parameters results in a synthetic problem that

is easier to solve than the real world problems as it contains no non-local effects. Instead, we add noise

similar to what exists in real world bundle adjustment problems:

(1) Camera Drift: initial camera estimates tend to become less accurate the farther they are away from

3https://3d.bk.tudelft.nl/opendata/3dfier/

https://3d.bk.tudelft.nl/opendata/3dfier/
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the origin. We model camera drift as

d = || −RT t||, Distance from origin (3.1)

tdrifted = t+ ασ1d
2, (3.2)

Rdrifted =


sin(βσ2d

1.2) 0 0

0 cos(βσ2d
1.2) 0

0 0 1

R, (3.3)

where R and t and the pose of camera, α and β control the magnitude of the drift, and σ1 and

σ2 are normal random variables with user specified variance. The translational noise is increased

as the square of the distance from the origin and the rotational noise uses the distance to the 1.2

power. These choices are arbitrary.

(2) Imperfect Camera Model: the camera model we use has two parameters for radial distortion. In

practice, real world camera lenses exhibit more complex distortion.

(3) Incorrect correspondences: the feature matching process is often imperfect and creates correspon-

dences between two features that are not the same. These are essentially outliers; they will never

be aligned and should be discarded. Outliers are usually filtered either by running a nonlinear

optimizer multiple times and discarding high-cost points, or by using a robust loss function (see

section 4.4.5).

We find that adding camera drift is effective for creating difficult synthetic problems. Adding a little

noise to the camera rotational parameters also helps as rotational error is highly nonlinear. We are careful

to not add too much noise or too many incorrect correspondences as this leads to problems with many

outliers (see section 4.4.5 for a solution).

Code implementing the above synthetic problem generation has been submitted to the Journal of Open Source

Software.



Chapter 4

Multigrid for Bundle Adjustment

This chapter is an edited version of work submitted to ECCV ’20 done in collaboration with Jed Brown. This

material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced

Scientific Computing Research under Award Number DE-SC0016140. This research used resources of the National

Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of

Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Performance of a bundler adjuster is bounded by the performance of the linear system solver it uses. The

Levenberg-Marquart algorithm that is typically used depends on linear solves to the steps it takes towards

the optimum (see section 1.2.2). Existing solutions are slow when problem sizes become large (tens of

thousands of cameras) and when long range errors are present. To combat these issues, we develop a new

multigrid solver targeted at bundle adjustment. This solver accurately handles long range error and scales

better than existing solvers on large, difficult problems.

4.1 Solving the Linear System

Solving the linear system, JTJ+D, is the slowest part of Levenberg-Marquardt. This linear system exhibits

a special structure: it is composed of four blocks where the diagonal blocks are block diagonal and the off

diagonal blocks have arbitrary structure.

F = Jacobian restricted to camera parameters, (4.1)
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E = Jacobian restricted to point parameters, (4.2)

J =

[
F E

]
, (4.3)

JTJ +D =

A = F TF +DF F TE

ETF C = ETE +DE

 . (4.4)

C is a block diagonal matrix with blocks of size 3 × 3 corresponding to point parameters. A is a block

diagonal matrix with blocks of size 9× 9 corresponding to camera parameters. ETF is a block matrix with

blocks of size 9 × 3 corresponding to interaction between points and cameras. A usual trick to apply is

using the Schur complement to eliminate the point parameter block C:

S = A− F TEC−1ETF.

S is a block matrix with blocks of size 9 × 9. C is chosen over A because the number of points is often

orders of magnitude larger than the number of cameras. Thus, applying the Schur complement greatly

reduces the size of the linear system being solved.

The Schur complement system has structure determined by the covisibility of cameras: if ci and cj both

observe the same point, then the block Sij is nonzero. In practical terms, S tends to be dense when all the

images are of the same object, for example, tourist photos of the Eiffel Tower. S tends to be sparse when

the images cover a large area, like images taken from a car as it drives around a city (we call this situation

street view). We will focus on solving sparse S for this paper.

This linear system is normally not solved to a tight tolerance. Usually, a fairly inexact solve of the linear

problem can still lead to good convergence in the nonlinear problem [5]. As the nonlinear problem gets

closer to a minima, the accuracy of the linear solve should increase. The method for controlling the linear

solve accuracy is called a forcing sequence. Ceres Solver [4], the current state of the art nonlinear least-

squares solver, uses a criterion proposed by Nash and Sofer [50] to determine when to stop solving the

linear problem:

Qn =
1

2
xTAx− xT b, (4.5)

stop if i
Qi −Qi−1

Qi
≤ τ, (4.6)
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where i is the current conjugate gradients iteration number and τ is the tolerance from the forcing se-

quence. It is important to note that the occurrence of the iteration number in the criteria means that more

powerful preconditioners end up solving the linear problem to a tighter tolerance.

When using a simple projective model, the bundle adjustment problem is ill-conditioned. There are four

main causes:

(1) The large difference in scale between rotational and translational parameters (rotations are in the

range 0–π, translations in the range 0–1000) causes scale issues in the Jacobian.

(2) The distortion model used is highly nonlinear (it contains a fourth order term).

(3) Projecting points into the camera frame means that moving points that are closer has a much larger

effect on the residual than moving father away points the same distance.

(4) Rodrigues vectors have a singularity when their angle of rotation is zero.

There are a number of solutions proposed for these issues. For example, in [57], Qu adaptively reweights

the residual functions and uses a local parameterization of the camera pose to improve conditioning. These

improvements are largely orthogonal to improving the performance of the linear solver. For this thesis

we will use the simple model proposed earlier as it is used in the real world and would like our solver to

handle ill-conditioned matrices. We do use a diagonal scaling of the Jacobian as it can be applied to any

problem:

D = diag(JTJ), (4.7)

J̃ = D− 1
2J. (4.8)

This scaling is essential to improve the conditioning enough that matrix-matrix products with J do not

suffer from excess roundoff error.
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4.2 Related Work

There are a variety of ways to solve S. Konolige uses a sparse direct Cholesky solver [37]. Sparse direct

solvers are often a good choice for small problems because of their small constant factors. For large prob-

lems with 2D/planar connectivity, sparse direct methods require O(n1.5) time and O(n logn) space when

small vertex separators exist (a set of vertices whose removal splits the graph in half) [44]. In street view

problems, camera view overlap in street intersections creates large vertex separators, making sparse di-

rect solvers a poor choice for large problems. To improve scaling, Agarwal et al. propose using conjugate

gradients with Jacobi preconditioning [5]. Kushal and Agarwal later extend this work with block-Jacobi

and block-tridiagonal preconditioners formed using the visibility, or number of observed points in common

between cameras [40]. Jian et al. propose using a preconditioner based off of a subgraph of the unreduced

problem similar to a low-stretch spanning tree [33].

4.3 Multigrid for Bundle Adjustment

4.3.1 Nullspace

Fast convergence of multigrid requires satisfaction of the strong approximation property:

min
u
||e− Pu||2A ≤

ω

||A||
〈Ae,Ae〉,

for any fine-grid error e and constant ω determining convergence rate [47, 59, 67]. To satisfy this con-

dition, es for which ||Ae|| is small (near-nullspace vectors) must be accurately captured by P . For our

bundle adjustment formulation, JTJ has a nullspace, N , with 7 degrees of freedom corresponding to the

free modes of the nonlinear problem. Specifically, the nonlinear problem can be freely translated (in 3

directions), rotated (in 3 directions), and scaled. We compute these vectors analytically:

N1
t =−R

[
1 0 0

]T
, (4.9)

N2
t =−R

[
0 1 0

]T
, (4.10)

N3
t =−R

[
0 0 1

]T
, (4.11)
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N4
t =t, (4.12)

N5,6,7
R =

1

2

∣∣∣csc(a
2

)∣∣∣ (r (−a cos(a
2

)
+ (4.13)√

2− 2 cos(a)
)
(−r · a)+

a
(
−a cos

(a
2

)
+ (r ×−a) sin

(a
2

))))
,

where a =

[
1 0 0

]T
,[

0 1 0

]T
,[

0 0 1

]T
.

N1 to N3 are the linearized translations, N4 is the linearized scaling, and N5 to N7 are the linearized

rotations. We empirically verify that N is in the nullspace of S. When the damping matrix D is small, this

nullspace is near-nullspace vectors, K, of JTJ +D. For the Schur complement system, the near-nullspace

of S is the near-nullspace of JTJ +D restricted to the camera parameters. We augment the near-nullspace

with 9 columns that are constant on each of the 9 camera parameters.

4.3.2 Aggregation

Algorithm 5 Aggregation

1: function aggregate(strength-of-connection matrix G of size n× n)
2: for i ∈ 1..n do

3: if i is unaggregated then
4: for j ∈ Gi,: sorted by largest to smallest do

5: if j is unaggregated then
6: form new aggregate with i and j
7: break

8: else if j is in aggregate k and size(k) < 20 then
9: add i to aggregate k

10: break

11: end if

12: end for

13: end if

14: end for

15: end function

The multigrid aggregation algorithm determines both how quickly the solver converges and the time



47

it takes to apply the preconditioner. Choosing aggregates that are too large results in a cheap cycle that

converges slowly. On the other hand, if aggregates are too small, the solver will converge quickly but each

iteration will be computationally slow. The aggregation routine needs to strike the right balance between

too large and too small aggregates.

Typical aggregation routines for multigrid form fixed diameter aggregates by clustering together a given

“root” node with all its neighbors. This technique works well on PDE problems where the connectivity is

predictable and each degree of freedom has low degree. Bundle Adjustment does not necessarily have these

characteristics. Street view-like problems might have low degree for road sections that do not overlap, but

when roads intersect, some dof’s can be connected to many others. Choosing one of these well connected

dof’s as the root of an aggregate creates a too aggressive coarsening.

Aggregation routines for non-mesh problems exist, for example, for graph Laplacians [38, 46]. These rou-

tines have to contend with dofs that are connected to a majority of other dofs; something we do not expect

to see in street view-like datasets. Instead, we use a greedy algorithm that attempts to form aggregates by

aggregating unaggregated vertices with their “closest” connected neighbor and constrains the maximum

size of aggregates to prevent too aggressive coarsening.

Closeness of dofs is determined by the strength-of-connection matrix. Almost all multigrid aggregation

algorithms use this matrix as an input to determine which vertices should be aggregated together. The

strength-of-connection matrix can be created based only using matrix entries (for example, the affinity [46]

and algebraic distance metrics [19]) or use some other, geometric information. For bundle adjustment,

this other information can be camera and point positions or the visibility information between them. The

strength-of-connection metric we choose to use is the visibility metric used by Kushal and Agarwal in

[40]. We tried other metrics, like including the percentage of image overlap between two cameras, but the

visibility metric remained superior. The visibility strength-of-connection matrix, G, is defined as:

Gi,j =


0, i == j,

vTi vj
||vi||||vj || , otherwise,

(4.14)
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vkl =


1, camera k sees point l,

0, otherwise.

(4.15)

Most aggregation routines for PDE’s enforce some kind of diameter constraint on aggregates. We find

that for our problems this is not necessary. However, we force aggregates to contain no more than 20 dofs,

to ensure our aggregates do not become very large. In practice, we see that aggregate sizes are usually in

the range for 8 to 3, with the mean aggregate size usually just a little more than 3.

4.3.3 Prolongation

We use a standard multigrid prolongation construction technique [1, 67]. For each aggregate, the nullspace

is restricted to the aggregate, a QR decomposition is applied, and Q becomes a block of P while R be-

comes a block of the coarse nullspace:

QaggRagg = Nagg forall agg ∈ aggregates, (4.16)

P = Π


Q1

. . .

Qn

 , (4.17)

Ncoarse = Π


R1

...

Rn

 . (4.18)

Here Π is a permutation matrix from contiguous aggregates to the original ordering. Using the QR decom-

position frees us from having to compute the local nullspace and represent it on the coarse level (this would

require computing the center of mass of each aggregate). Our near-nullspace has dimension 16 (7 from

JTJ ’s nullspace, 9 from per dof constant vectors), so each of our coarse level matrices has 16 by 16 blocks.

4.3.4 Smoother

We use a Chebyshev smoother [3] with a point block Jacobi matrix. We find the Chebyshev smoother to

be more effective than block-Jacobi and Gauss-Seidel smoothing. The Chebyshev smoother does come
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with a disadvantage: it requires an estimate of the largest eigenvalue, λmax, of D
−1A. Like Tamstorf et

al., we find that applying generalized Lanczos on Ax = λDx is the most effective way to find the largest

eigenvalue [67]. This eigenvalue estimate is expensive, so we limit it to 5 applications of the operator.

We use 1.1λmax for the high end of the Chebyshev bound and 0.3λmax as the lower end. However, the

superior performance of the Chebyshev smoother outweighs its increased setup cost. We also tried using

the Gershgorin estimate of the largest eigenvalue, but that proved to be very inaccurate (by multiple orders

of magnitude). We apply two iterations of pre-smoothing and two of post-smoothing.

4.3.5 To Smooth or Not To Smooth

Aggregation-based multigrid uses prolongation smoothing in order to improve convergence [72]. Smooth-

ing the prolongation operator is sufficient to satisfy the strong approximation property and achieve con-

stant iteration count regardless of problem size. Usually, smoothing the prolongation operator improves

convergence rate at the cost of increased complexity of the coarse grids. In PDEs and other problems with

very regular connectivity, this trade off is worthwhile. However, in other problems, like in irregular graph

Laplacians, irregular problem structure causes massive fill-in—coarse grids become dense [46]. The street

view-based bundle adjustment problems we are working with appear to be similar in structure to PDE

based problems: the number of nonzeros per row is bounded and the diameter of the problem is relatively

large. However, when we apply prolongation smoothing to our multigrid preconditioner, we see large

fill-in in the coarse grids, similar to what happens in irregular graph Laplacians. Although the nonzero

structure of street view bundle adjustment appears similar to PDEs, it still has places where dofs are cou-

pled with many other dofs—places where large fill-in occurs. These places could be landmarks that are

visible from far away or intersections where there is a large amount of camera overlap. The large fill-in on

the coarse grid makes the setup phase too expensive to justify the improved performance in the solve phase

(see figure 4.7). Choosing not to smooth aggregates means our solver does not scale linearly, but it does

scale better than any of the current state of the art solvers.
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4.3.6 V-Cycles vs W-Cycles

Two common areas where a given multigrid implementation can struggle are the coarse grid solve accuracy

and the fine grid smoother. To test if our coarse grid solve is accurate, we compared performance of our

multigrid preconditioner using W-cycles vs V-cycles. W-cycles solve the coarse grid multiple times for a

more accurate solution. If W-cycles perform better, then we know our coarse grid solve is not accurate

enough.

Figure 4.1 shows the result of this experiment. Each plot measures the nonlinear objective function value

vs cumulative solve time on a number of different problems. In every problem, the solve time with V-cycles

is approximately equal to the solve time with W-cycles. From this we conclude that the coarse grid solve is

accurate enough.

4.3.7 Implicit Operator

On many bundle adjustment problems, it is often faster to apply the Schur complement in an implicit

manner, rather than constructing S explicitly [5]. That is, we can apply manifest Sx for a vector x as

Ax − F T (E(C−1(ET (Fx)))). As the conjugate gradients algorithm (CG) requires only matrix-vector

products, we can use the implicit matrix product with it for improved performance. An issue arises when

we use a preconditioner with CG: the preconditioner often needs the explicit representation of S. For

block-Jacobi preconditioning, Agarwal et al. [5] construct on the relevant blocks of S. The same technique

is used by Kushal and Agarwal in their visibility-based preconditioner [40]. For Algebraic multigrid, the

explicit matrix representation is needed to form the Galerkin projection P TSP . We could use the implicit

representation with the Galerkin projection, P T (A(Px)) − P T (F T (E(C−1(ET (F (Px)))))), but then

we are paying the cost of the full implicit matrix at each level in our hierarchy. We instead compute the

cost of using the implicit vs explicit product on each level of our hierarchy and choose the cheapest one.

In our tests we create both the implicit and explicit representations for each level, but only use the most

efficient one. It would be possible to create only the needed representation on each level, but we have not

explored the costs. This may actually have a large performance impact as the Galerkin projection requires



51

cameras: 17935 cameras: 24423 cameras: 31913

cameras: 4468 cameras: 7957 cameras: 12446

0 200 400 600 0 2505007501000 0 500 1000

0 30 60 90 120 0 50 100150200 0 100200300400500

1e-12
1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
1e-03
1e-02

1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
1e-03
1e-02

1e-12
1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
1e-03
1e-02

1e-12
1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
1e-03
1e-02

1e-12
1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
1e-03
1e-02

1e-12
1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
1e-03
1e-02

Cumulative Solve Time

N
o
n
li
n
e
a
r
C
o
st

Cycle Type

V-Cycle

W-Cycle

Figure 4.1: Nonlinear objective function values vs cumulative solve times for multigrid with V-cycles

and W-cycles on a set of increasingly larger synthetic problems. Multigrid performs about the same with

V-cycles and W-cycles, indicating that coarse grid solves are accurate enough with V-cycles.
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an expensive matrix-triple product (currently the most expensive part of setup).

This choice of implicit vs explicit operator highlights an important point of using multigrid for bundle

adjustment: the explicit operator might not be computationally feasible. In situations where the visibility

graph becomes dense, the explicit matrix will grow as O(n2). Like the current state of the art (visibility

based preconditioning), we ignore these situations and instead focus on problems where the visibility

structure is sparse. It may be possible to use some kind of sparsification before performing the linear solve

in order to avoid this problem.

4.4 Results

We tested our multigrid preconditioner against point block Jacobi and visibility-based block Jacobi pre-

conditioners on a number of synthetic problems (we found the visibility-based tridiagonal preconditioner

to perform similarly to visibility-based block Jacobi, so we omit it). Our test machine is an Intel Core i5-

3570K running at 3.40GHz with 16GB of dual-channel 1600MHz DDR3 memory. For large problems, we

use NERSC’s Cori—an Intel Xeon E5-2698 v3 2.3 GHz Haswell processor with 128 GB DDR4 2133 MHz

memory. We use Ceres Solver [4] to perform our nonlinear optimization as well as for the conjugate gra-

dient linear solver. Ceres Solver also provides the point block Jacobi and visibility based preconditioners.

We terminate the nonlinear optimization at 100 iterations or if any of Ceres Solver’s default termination

criteria are hit. Our initial trust region radius is 1e4. We use a constant forcing sequence with tolerance τ .

Results are post processed to ensure that all nonlinear solves for a given problem end at the same objective

function value. For some preconditioners (like our multigrid), this significantly impacted the total number

of nonlinear iterations taken (see section 4.4.1).

Our solver is written in Julia [13] and uses SuiteSparse [24] for its Galerkin products. Our implementa-

tion is not heavily optimized (unlike the point block Jacobi and visibility based preconditioners). We do

not cache the sparse matrix structure between nonlinear iterations and reallocate almost all matrix prod-

ucts. Furthermore, the Julia code allocates more and is slower than it could be if written in C or C++.

Jacobian matrices are copied between Julia and Ceres Solver, leading to a larger memory overhead. We do
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Figure 4.2: Preconditioner solve time versus multigrid solve time for a set of synthetic problems with

varying number of cameras, visibility structure, and noise. Solve time is measured as total time spent in

the linear solver (setup and solve) for all nonlinear iterations to a certain problem dependent tolerance.

Points above the diagonal (black line) indicate the problem was solved quicker with multigrid than the

given preconditioner, points below indicate that multigrid was slower. Vertical columns of plots have use

the same loss function. Horizontal plot rows have the same linear solve tolerance τ . For the majority of

cases, multigrid performs better than all the other solvers.



54

not use a sparse matrix format that exploits the block structure of our matrices or use matrix-multiples that

exploit this structure. All of this is to say that our method could be optimized further for potentially greater

speedup.

Still, our multigrid preconditioner performs better than point block Jacobi and visibility based precon-

ditioners on most large problems. Figure 4.2 shows the relative solve time of other preconditioners vs our

multigrid preconditioner for a variety of synthetic problems. Our preconditioner is up to 13 times faster

than point block Jacobi, and 18 times faster than visibility based preconditioners. Median speedup is 1.7

times faster than point block Jacobi, and 2.8 times faster than visibility based preconditioners. This in-

cludes cases where problems are large, but not difficult; a situation where our solver performs poorly. On

smaller problems (with less than 1000 cameras), our solver is significantly slower than direct methods.

On problems where the geometry is simpler, point block Jacobi normally outperforms visibility based

preconditioners and our solver. This is because the linear problems are relatively easier to solve and

the visibility based methods cannot recoup their expensive setup cost. On more complicated problems

(when the camera path crosses itself), the difficulty of the solve makes the high setup cost of the visibility

based methods worthwhile. We find that these more complicated problems are also where our multigrid

preconditioner has a larger speedup over the other methods. We believe that this is because the multigrid

preconditioner does a good job of capturing long range effects in the problem.

4.4.1 Solver Accuracy

Our multigrid preconditioner is a more accurate preconditioner than point block Jacobi and visibility

based methods. In general, preconditioners like point block Jacobi converge fast in the residual norm,

but converge slower in the true error norm. Multigrid tends to converge similarly in the error norm and

the residual norm. Figure 4.5 shows this behavior on a synthetic problem. This behavior is reflected in

the nonlinear convergence when using our solver vs point block Jacobi. Each nonlinear iteration with

multigrid reduces the objective function by a larger value than point block Jacobi, indicating that the

multigrid solution was more accurate. See figure 4.3 for plots of this behavior on some of our datasets.

Also interesting to note in this figure is the slope of convergence. In almost all the plots, the solvers first
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Figure 4.3: Objective function value vs nonlinear iteration number for a variety of synthetic problems

with varying problem structure. Our multigrid solver tends to reach that value in fewer iterations than the

other solvers because it is more accurate for a given solve tolerance. For solves where a high accuracy is

required, or where Jacobian calculation is expensive, our solver is a good choice.
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Figure 4.4: Objective function value vs cumulative time for a variety of synthetic problems with varying

problem structure. Although multigrid is slow initially, its handling of long range error means it converges

quickly for longer than point block Jacobi and visibility based preconditioning. Note that visibility based

preconditioning is very slow in the first couple of iterations. We believe this is a scalability bug in its setup

phase.
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given error, multigrid has a higher residual norm than point block Jacobi.
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converge quickly then hit a point where they start converging more slowly. Our multigrid solver also

follows this characteristic, but converges more steeply in the first phase and continues converging quickly

for longer. We believe this is because our solver more accurately captures long range effects. For nonlinear

optimization problems where a high degree of accuracy is required, this behavior makes our multigrid

preconditioner even more performant than existing solvers.

For solves where τ is smaller (0.01), our solver performs better than point block Jacobi. When τ is

larger, our solver is generally slower than point block Jacobi because the setup cost of our solver is not

amortized. In general, our solver is a good choice when when tight (small) solve tolerances are used or

when the linear problems are hard to solve.

4.4.2 Scaling

For larger problem sizes, the algorithmic complexity of different solution techniques begins to dominate

over constant factors. It is well known that solving a second order elliptic system (such as elasticity) on

a
√
n ×
√
n grid using conjugate gradients with point block Jacobi preconditioning requires O(n1/2)

iterations, for a total cost of O(n1.5) [68]. We expect to interpret the global coupling and scaling of bundle

adjustment similarly, in terms of diameter of the visibility graph, which has 2D grid structure for street

view data in cities. If the structure is not two dimensional, say for a long country road, then we would

expect the bound to be O(n2). We expect that visibility based methods also scale as O(n1.5), but with

different constant factors as they cannot handle long range effects. Multigrid can be bounded by O(n),

but this requires certain conditions on the prolongation operator that we do not satisfy (specifically, not

smoothing the prolongation operator means that we do not satisfy the strong approximation property).

Empirically, we find that our multigrid technique does not scale linearly with problem size, but still scales

better than other preconditioners (figure 4.6).

To empirically verify the scaling of visibility-based methods and our multigrid method, we construct

a series of city block-like problems with increasing numbers of blocks. Increasing the number of city

blocks instead of adding more cameras to the same structure means that the test problems have increasing

diameter. We add noise that looks like a sine wave to the problem to induce long range errors. Figure 4.6
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Figure 4.6: Linear solver scaling experiment on a series of increasingly larger grids with long range

noise only. Grid size is on the order of
√
number of cameras ×

√
number of cameras. The y-axis is a

measure of linear solver solve time (not including linear solver setup) per camera. A horizontal trend

indicate that a solver is scaling linearly with the number of cameras. Slopes greater than zero indicates the

solver is scaling superlinearly. We see the expected behavior that Multigrid scales close to linearly while

visibility and point block Jacobi scale superlinearly. Smoothed aggregation multigrid has the best scaling,

but its setup phase is prohibitively expensive.
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Figure 4.7: Linear solver scaling experiment on a series of increasingly larger grids with long range

noise only. The setup is the same as figure 4.6, except this plot contains the setup and solve times of the

linear solver. Our multigrid preconditioner with smoothed aggregation performs worse than point block

Jacobi and our multigrid preconditioner without smoothing due to the high setup cost of prolongations

smoothing. The visibility preconditioner appears to be scaling as O(n3). Comparing to the plot without

setup time, we see that this poor scaling appears entirely in the setup phase.
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Figure 4.8: Linear solver scaling experiment on a series of increasingly larger grids with long range

noise only. The setup is the same as figure 4.6, except this plot measures the iteration count of the solve

vs the number of cameras. We would expect the smoothed aggregation multigrid to have zero slope as

it should be an O(n) solver. The noise introduced into the problem could contribute to the superlinear

behavior we are seeing.



60

shows the results of this experiment. Surprisingly, point block Jacobi is scaling as O(n2), which indicates

that bundle adjustment is more similar to a shell problem than an elasticity problem. Still, our solver is

faster than other solvers in both solve time and setup plus solve time (figure 4.7) for large problems.

4.4.3 Eigenvalues

As mentioned in the previous section, we would expect the difficulty of the linear problem to grow with

the condition number and the diameter of the problem. However, when we compute the eigenvalues, we

find that the condition number of the problem does not grow with the diameter of the problem. Figure 4.11

plots condition number vs diameter for for a set of increasing larger synthetic city block problems (the

same as in section 4.4.2). However, we would expect the iteration counts to grow as the square root of the

condition number, but this is not the case in figure 4.11. The cause of this discrepancy is unclear.

4.4.4 Parallelism

Our solver is currently single threaded. Most of the time spent in the solver is in the linear algebra routines,

so using a parallel linear algebra framework is an easy way to parallelism. The only non-linear algebra part

of our multigrid solver is aggregation. There are parallel aggregation techniques, but they are not suited for

the irregular structure present in bundle adjustment problems.
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Figure 4.9: Nonlinear cost vs nonlinear iteration number on a 40 by 40 synthetic city grid. The linear

solve tolerance is τ = 0.01 with a Huber loss function to expose long range error. The cost for solves

with point block Jacobi lags behind solves with multigrid or visibility preconditioners because point block

Jacobi is a less accurate solver.
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Figure 4.10: Eigenvector plots for a synthetic problem. In clockwise order from top left: 1. Smallest

eigenvector on the first nonlinear solve iteration 2. Second smallest eigenvector on the first nonlinear

iteration 3. Smallest eigenvector on the 10th nonlinear iteration 4. First and second largest eigenvectors

on the first nonlinear iteration. The smallest eigenvectors remain the same between the first and 10th

nonlinear solve, but their respect eigenvalues are different by a factor three orders of magnitude.
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Figure 4.11: Condition number and linear solver iteration count vs problem diameter on a series of

increasingly larger synthetic problems. Although the linear problems becoming increasing difficult to solve

with larger diameter, the condition number does not reflect this.
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Figure 4.12: Plot of the smallest eigenvector at the nonlinear solution of a synthetic bundle adjustment

problem. Largest movements are in the direction that the cameras are facing.
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4.4.5 Robust Error Metrics

Often, there are outlying points in bundle adjustment problems. These are the product of incorrect cor-

respondences, points that are too close to accurately track, or points with very poor initialization. In

any case, outlying points make up a disproportionate amount of the nonlinear cost function (due to the

quadratic scaling of the cost). Levenberg-Marquardt attempts to minimize the residual, and the quickest

way it does is to focus on the most extreme outliers. This effectively masks the presence of long-range

error. The usual solution is to use a robust loss function. Robust loss functions are quadratic around the

origin, but become linear the farther they get from the origin. The robust loss function we use is Huber

loss,

loss(x) =


x, x ≤ 1,

2
√
x− 1, x > 1,

where x is the squared L2 norm of the residuals.

Point block Jacobi is a local preconditioner: it is effective at resolving noise in a small neighborhood.

Without a robust loss function point block Jacobi is quick because it “fixes” outliers in a couple iterations.

A robust loss function exposes long-range noise making point block Jacobi slow. However, multigrid is

more effective at addressing long range error, so it is a comparatively faster solver when used with a robust

loss function.

4.4.6 When to Use Multigrid

Our multigrid solver is most effective in addressing long range error. It also scales much better than point

block Jacobi and visibility based preconditioners on increasing problem size. However, its expensive setup

time needs to be amortized by its improved solve times. With these points in mind, we recommend the

following choices of linear solver:

• If your problem is small (less than 1000 cameras), use a direct solver.

• If your problem has many outliers, for example, in the initial iterations of bundle adjustment, use

point block Jacobi.
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• If your problem is large and contains long range errors, use our multigrid solver.

• If your problem is large and requires high solve tolerances, for example, if Jacobian evaluation

is very expensive, use our multigrid solver as its setup phase is amortized by the high cost solve

phase.

4.5 Conclusion & Future Work

We present a multigrid preconditioner for conjugate gradients that performs better than any existing solver

on bundle adjustment problems with long range effects or problems requiring a high solve tolerance. In

tests on a set of large synthetic problems, our solver is up to 13 times faster than the next best solver. Our

solver is tailored for a specific kind of bundle adjustment problem: a 9-parameter camera model with

reprojection error. Generalizing this solver to different kinds of camera models would require computing a

new analytical nullspace. For most models, this should just involve finding the instantaneous derivatives of

the 7 free modes (3x translation, 3x rotation, 1x scaling). It would also be possible to use an eigensolver to

find the near-nullspace at an increase in setup time cost [17].

In future work we would like to find a way to automatically switch between point block Jacobi and

multigrid preconditioners depending on the difficultly of the linear problem. We would also like to im-

prove our solver so that it will scale linearly with the problem size by either using some sort of filtered

smoothing, or other multigrid techniques used to compensate for lack of prolongation smoothing.



Chapter 5

Distributed Memory Bundle Adjustment

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Ad-

vanced Scientific Computing Research under Award Number DE-SC0016140. This research used resources of the

National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the

Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

As with graph Laplacian problems, bundle adjustment problems are constantly growing in size. In [36],

Google Street View uses billions of images and hundreds of billions of features to do planet-scale bundle

adjustment and SfM. Improvements in core speeds and memory bandwidth can improve performance on

single computers, but, to solve very large problems, using a distributed memory machine is necessary.

Surprisingly, the literature on bundle adjustment in distributed memory parallelism is limited. Eriksson

et al. propose a novel formulation of the bundle adjustment optimization problem that is suitable to a dis-

tributed memory environment [26]. Zhang et al. extend this work with an improved partitioning scheme

and the use of over-relaxation to improve convergence [76]. Kai et al. provide a parallel optimization

framework, but do not provided any distributed memory results [51]. However, none of these papers take

the approach of using distributed linear algebra to implement Levenberg-Marquardt.

We implemented Levenberg-Marquardt in distributed linear algebra using PETSc [10, 11]. Most of LM

is easily adapted to distributed memory, but a couple parts pose a challenge. The first is distribution of

cameras and points between processes. We choose to partition cameras evenly between processes, while

points are replicated amongst all processes for which they are needed (those processes on which they is a
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camera that views the point). We choose to distribute cameras over points so that the Hessian will be well

balanced amongst processes. Once cameras and points are distributed, we can construct the local portions

of the parameter vector, Jacobian, and approximate Hessian. The Jacobian is separated into a camera block

and a point block, where each process contains entries for each camera or point it “owns.”

Another difficulty arises in the construction of the Schur complement. Ceres Solver [4] sorts entries in

the block of the Jacobian containing points and eliminates residuals interacting with the same point to

quickly create the Schur complement. We cannot apply this same trick as residual blocks for a point may

not reside on the same process as the camera that sees it, so our Schur complement construction is much

slower. About 30 percent of solve time is spent in the Schur complement, but we leave improvements for

future work.

We tested our implementation on NERSC’s Cori: a Cray supercomputer with 36 “Haswell” Intel Xeon

E5-2698 v3 cores per node and a Cray Aries interconnect. For each test, we run four MPI processes per

physical node in order to obtain close to peak bandwidth. We used both point block Jacobi and GAMG

preconditioners. GAMG—an algebraic multigrid implementation—is configured with unsmoothed pro-

longation, the near-nullspace of the bundle adjustment problem, and a Chebyshev point block Jacobi

smoother. It does not use any of the specialized aggregation routines developed in the previous chapter.

All of our results are for synthetic problems (see chapter 3) because there are no large real-world datasets

available. Our datasets sizes range from 26 thousand cameras to 100 thousand cameras.

We tested both the weak and strong scaling of our implementation. Results are satisfactory, though

there is no other distributed memory bundle adjuster to compare to. For strong scaling (figure 5.1), we

see that our implementation maintains decent efficiency depending a little on the problem structure. The

problem in the bottom right of figure 5.1 is less efficient because the linear problems are harder to solve.

For comparison, this plot contains a serial solver data point (labeled Ceres Solver). Our solver requires 16

processes to surpass the serial solve. Most of the reason for the initial slowness of our solver is the lack of

Schur complement trick. Still, our solver is at least two times faster than the serial solver with 32 processes

(and it looks like would grow larger with more processes).

Our weak scaling results are a little more interesting. Using GAMG results in the scaling we would
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expect: as problem sizes increase, efficiency slowly decreases. The point block Jacobi results seem to

indicate some sort of bug in our solver. As the problem size increases, the total solve time decreases and

the efficiency greatly increases. When we look at the iteration counts for these problems, we see them

decreasing, which is contrary to what we see in the serial case (section 4.4.2). Overall, these weak and

strong scaling results indicate that distributed linear algebra bundle adjustment is a good choice to solve

large problem sets.

The initial results with our LM implementation indicate that distributed memory parallelism can be a

quick way to solve large bundle adjustment problems. Scaling results are good, and the parallel solver can

outperform serial solver when the problem can fit in memory. For large problems, our implementation

allows for the solution of problems that are not feasible on a single node. Still, this is just an initial step.

Work needs to be done to address the best data layout, how to handle more complicated camera mod-

els, how to handle parameters shared amongst many cameras, and how to distribute problems where to

connectivity graph is dense.
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Chapter 6

Software Contributions

Performance results for new algorithms do no just spontaneously appear—they require an implementa-

tion. For all algorithms discussed in thesis, the implementation that generated results is provided. Making

the code publicly accessible allows other researchers to verify results. Furthermore, these implementa-

tions offer something for new research to compare against and a way to find details not discussed in their

respective papers. All code below is open source: it can be used and modified for any purpose.

• LigMG: Multigrid for graph Laplacians (chapter 2) is available at https://github.com/ligmg/

ligmg.

• Bundle adjustment multigrid (chapters 4,5) is available at https://gitlab.com/tkonolige/

bundle_adjustment.

• Synthetic graph generation (chapter 3) is available at https://github.com/tkonolige/

city2ba.

I’ve also contributed to open source software projects when relevant:

• PyAMG: fixed algebraic strength-of-connection and implemented affinity strength-of-connection [46].

• CombBLAS: miscellaneous bug fixes and code modernization.

• PETSc: Levenberg-Marquardt implementation (chapter 5) and miscellaneous improvements.

https://github.com/ligmg/ligmg
https://github.com/ligmg/ligmg
https://gitlab.com/tkonolige/bundle_adjustment
https://gitlab.com/tkonolige/bundle_adjustment
https://github.com/tkonolige/city2ba
https://github.com/tkonolige/city2ba
https://github.com/pyamg/pyamg
https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/
https://www.mcs.anl.gov/petsc/
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Conclusion

In this thesis, I have presented work on developing multigrid solvers for graph Laplacians in parallel

environments and multigrid solvers for bundle adjustment in serial and parallel environments. The graph

Laplacian solver features adaptations of low-degree elimination and Galerkin coarse grid construction to a

distributed memory environment. Specifically, these operations are rephrased as linear algebraic operations

so they can be used with a block-distributed matrix. My solver also features a novel parallel aggregation

algorithm tuned for graphs with highly irregular connectivity. Scaling results show this distributed memory

multigrid solver surpassing the state of the art serial solvers when using multiple processes (although serial

results are slower than the state of the art due to trade offs for parallelism). This solver also shows good

scalability dependent on problem size and number of processes.

I also developed a multigrid solver for bundle adjustment problems. The solver features a near-nullspace,

strength-of-connection metric, aggregation algorithm, and smoother all targeted for bundle adjustment. The

solver is up to 16 times faster than the state of the art on large, difficult problem sets. It shows superior

scalability, so it is a good choice for problems that would be infeasible with conventional solvers. I have

also provided some analysis of the difficulties existing solvers face on bundle adjustment problems. Ideally,

my multigrid solver would be parallel, but work remains to be done to have it operate in distributed mem-

ory (specifically, the aggregation routine is inherently serial). To assess the validity of using distributed

memory computing for bundle adjustment, I implemented a Levenberg-Marquardt nonlinear least-squares

solver using PETSc. Using a partition of cameras then points, this implementation outperforms a serial
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solver by 2x (although larger process numbers should be able to increase this speedup). Furthermore, this

implementation can solve bundle adjustment problems that do not fit on a single node.

The results for bundle adjustment and graph Laplacian solvers are good, but, as always, there remains

research to be done. For the graph Laplacian solver, it may be possible to adapt more sophisticated aggre-

gation routines, such as DRA [49], to a parallel environment. On graphs that are not social networks, the

current aggregation routine performs poorly. Having a metric to decide when this aggregation performs

poorly would useful for determining when to use this solver. Another area that could result in significant

speed up is applying graph sparsification between multigrid levels. Graph sparsification could also be a

useful preprocessing step in bundle adjustment to reduce the complexity of forming the Schur complement,

especially in situations where the camera-camera visibility graph becomes dense.

The bundle adjustment solver leaves some performance on the table. There are many implementation

details that could be improved, but the most important improvement would be ensuring that the solver

scales linearly. Applying techniques such as K-cycles [55] or block smoothing may bring the solver into

a linear regime. Extending the solver to handle different bundle adjustment formulations also presents a

direction for future research. It may be possible to compute the nullspace of a given formulation using

automatic differentiation and user provided free modes.
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